Dorsal spinocerebellar tract neurons in the chronic intact cat during wakefulness and sleep: analysis of spontaneous spike activity.
نویسندگان
چکیده
Relatively little is known about the transmission of ascending sensory information from lumbar levels across the behavioral states of sleep and wakefulness. The present study used extracellular recording methods in chronically instrumented intact behaving cats to monitor the activity of lumbar dorsal spinocerebellar tract (DSCT) neurons within Clarke's column during the states of wakefulness, quiet sleep, and active sleep. Clarke's column DSCT neurons were identified using antidromic identification and retrograde labeling techniques. The spontaneous spike rate and interspike interval data of DSCT neurons were quantified as a function of behavioral state. During wakefulness and quiet sleep, the spike rate of DSCT neurons was stable, and interspike interval histograms (ISIH) indicated a relatively high degree of regularity in DSCT neuronal spike train patterns. In contrast, during active sleep there was a marked reduction in the ongoing spike rate in a vast majority of cells tested. The magnitude of change in ISIHs and interspike interval data during active sleep depended in part on whether the reduction in cell firing was maintained or periodic throughout active sleep. Further suppression of spontaneous activity also was observed during intense rapid-eye-movement episodes of active sleep that were associated with clustered pontogeniculo-occipital wave and muscular twitches and jerks. After re-awakening, spontaneous spike activity of Clarke's column DSCT neurons resembled that recorded during previous episodes of wakefulness. These data provide evidence that ascending proprioceptive and exteroceptive sensory transmission through Clarke's column is diminished during the behavioral state of active sleep.
منابع مشابه
State-related inhibition by GABA and glycine of transmission in Clarke's column.
During the state of active sleep (AS), Clarke's column dorsal spinocerebellar tract (DSCT) neurons undergo a marked reduction in their spontaneous and excitatory amino acid (EAA)-evoked responses. The present study was performed to examine the magnitude, consistency of AS-specific suppression, and potential role of classical inhibitory amino acids GABA and glycine (GLY) in mediating this phenom...
متن کاملState-dependent GABAergic inhibition of sciatic nerve-evoked responses of dorsal spinocerebellar tract neurons.
Peripheral nerve-evoked potentials recorded in the cerebellum 35 yr ago inferred that sensory transmission via the dorsal spinocerebellar tract (DSCT) is reduced occasionally and only during eye movements of active sleep compared with wakefulness or quiet sleep. A reduction or withdrawal of primary afferent input and/or ongoing inhibition of individual lumbar DSCT neurons may underlie this occu...
متن کاملState-dependent changes in glutamate, glycine, GABA, and dopamine levels in cat lumbar spinal cord.
Recent studies have indicated that the glycine receptor antagonist strychnine and the gamma-aminobutyric acid type A (GABA A) receptor antagonist bicuculline reduced the rapid-eye-movement (REM) sleep-specific inhibition of sensory inflow via the dorsal spinocerebellar tract (DSCT). These findings imply that the spinal release of glycine and GABA may be due directly to the REM sleep-specific ac...
متن کاملTransmission through the dorsal spinocerebellar and spinoreticular tracts: wakefulness versus thiopental anesthesia.
BACKGROUND Most of what is known regarding the actions of injectable barbiturate anesthetics on the activity of lumbar sensory neurons arises from experiments performed in acute animal preparations that are exposed to invasive surgery and neural depression caused by coadministered inhalational anesthetics. Other parameters such as cortical synchronization and motor ouflow are typically not moni...
متن کاملRhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions.
Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay the activity of hindlimb afferents during locomotion, but lack input from the spinal central pattern gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 3 شماره
صفحات -
تاریخ انتشار 1996